
Object Oriented Metric Tool for Measuring Quality Metrics
of Classes

Lalima Soni1, Indrajeet Singh Chouhan2

ME, Department of Computer Engineering,
Institute of Engineering & Technology, DAVV Indore

(M.P), India

BE, Department of Computer Engineering,
Jai Narain College of Technology, RGPV Bhopal

(M.P), India

Abstract - In this age of object oriented language most of the
softwares are developed by object oriented approach only.
Object-oriented software is easier to maintain because its
structure is inherently decoupled. In object oriented
approach classes and objects are interlinked with each other.
Using this characteristics of classes and objects many object
oriented metrics like coupling, cohesion, polymorphism,
inheritance etc. can be derived. For better product quality,
first measure the product and then identify that improvement
is required or not. In this paper object oriented metrics like
encapsulation, design size, composition, abstraction etc. are
used to measure quality metrics like reusability, effectiveness,
extendibility, understandability etc. This paper also includes
desirable value of object oriented metrics which help to
identify the current state of project. And using these desirable
metrics values this paper also observes the relationship
between object oriented metrics and quality metrics.

Keywords - Object oriented metrics, Desirable value of object
oriented metrics, Quality metrics, Relationship between
object oriented metrics and quality metrics.

I. INTRODUCTION
Software quality measurement is a consecutive process.
Software quality helps to improve the state of a project.
For good program productivity and low maintenance better
quality software is required. Software quality metrics are
requisite part of any quality management system. This
software quality can be achieved by better quality metrics
which are interlinked with program code metrics. Quality
of software includes reliability, security, testability,
understandability, performance etc. And program code
metrics concerned with implementation. To measure the
quality it is needed to estimate and examine design and
implementation of software using suitable metrics and
evaluation techniques. The availability of the software
metric helps manager to control the various activities of
the development life cycle and contributes to the overall
objective of software quality. Software metrics describes
collectively very wide range of activities related with
measurement of software engineering. Software metrics is
split into three sub metrics, first process
metrics assess the effectiveness and quality of software
process, determine maturity of the process, effort required
in the process, effectiveness of defect removal during
development, and so on. Second product metrics is the
measurement of work product produced during different
phases of software development. And last project metrics

illustrate the project characteristics and their execution
[22]. Software quality metrics are a subset of software
metrics that focus on the quality aspects of the product,
process, and project. In general, software quality metrics
are more closely associated with process and product
metrics than with project metrics. This paper mainly
focuses to the product metrics. Quality of software
comprise flexibility, correctness, maintainability,
portability etc. some of them are totally based
on the functioning of codes, and some of them depends
upon the interaction of their functions. Functions are
directly related to the classes. So measuring the quality
metrics of classes is related with function interaction of
that class. This paper focuses on a set of object oriented
metrics that can be used to measure the quality of object
oriented design software. The metrics for object oriented
design focuses on measurements that are applied to the
class and design characteristics of software.

II. LITERATURE SURVEY
In this paper to evaluate the quality of the object oriented
software, it is needed to analyze the product software using
appropriate metrics and evaluation techniques [4]. In this
paper literature survey has been categorize into two sub
area namely Product metrics and Object oriented metrics.

A. Product metrics
Product metrics assess the internal attributes in order to
know the efficiency of overall quality of the software
under development. Various metrics formulated for
products in the development process which are listed
below.
1) Metrics for analysis model: These address various
aspects of the analysis model such as system functionality,
system size, and so on.
2) Metrics for design model: These allow software
engineers to assess the quality of design and include
architectural design metrics, component-level design
metrics, and so on.
3) Metrics for source code: These assess source code
complexity, maintainability, and other characteristics.
4) Metrics for testing: These help to design efficient and
effective test cases and also evaluate the effectiveness of
testing.
5) Metrics for maintenance: These assess the stability of
the software product.
This paper mainly concern with metrics for source code.
We choose object oriented metrics under the source code
of product.

Lalima Soni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (3) , 2020, 37-41

www.ijcsit.com 37

ISSN:0975-9646

B. Object oriented metrics
Object oriented metrics further divided into five sub parts
which are listed below.
1) System Metrics Level: It refers to a basic structural
mechanism of the OO paradigm as Encapsulation (MHF
and AHF), Inheritance (MIF and AIF), Polymorphism (PF)
and Message-passing (COF).
2) Coupling Level: Coupling is the use of methods or
attributes defined in a class that are used by another class.
Classes interact with other classes to form a
subsystem/system and this interaction can indicate the
complexity of the design. Representative metrics is
Coupling between Object (CBO).
3) Inheritance Level: It allows method to be inherited from
super classes. Representative metrics of this set are Depth
of Inheritance (DIT) and Number of Children (NOC).
4) Class Level: These metrics identify characteristics
within the class, highlighting different aspects of the class
abstractions and help identify where remedial action may
be taken. Representative metrics of this set are Response
for Class (RFC), Lack of Cohesion in method (LOCM),
and Weighted Method per Class (WMC).
5) Method Level: In OO systems, traditional metrics such
as Lines of Code (LOC) and Cyclomatic Complexity are
usually applied to the methods level.
Using the above object oriented metrics concept we cover
selective twelve metrics with their desirable value which
are used for quality metrics calculation.

III. PROPOSED SYSTEM
Object oriented metric tool find out the current object
oriented metric value of any Java project. These resultant
values help to find out the current status of project and
identified if things need to be improved. Desirable values
of object oriented metrics also help to analyze the result.
Resultant object oriented metrics values make calculation
of quality metrics more efficient.
Goal: To develop an application tool which help to
measure quality metrics of Java classes using object
oriented metrics.
Hypothesis: In this approach selective twelve object
oriented metrics are calculated for each class presents in
java project. Based on those value quality will be
calculated. This system consist three steps.
1) Accepting Java project input file, and extracting all the
classes and keywords (variables, methods etc) present in
Java project.
2) Using those keywords calculating the object oriented
metrics for each class.
3) Using object oriented metrics calculating the Quality
metric for each class.
Flow diagram of proposed system is shown in figure 1.
This section further explains twelve selective object
oriented metrics with their desirable value. Desirable
values help to define tight bound or loose bound between
objects and classes. Using this concept interconnection
between objects and classes for quality metrics is shown
by formulas.

Fig. 1 Flow diagram for proposed system

A. Object Oriented Metrics with Desirable Value
1) Messaging: A count of number of public methods that is
available as services to other classes. This is a measure of
services that a class provides [1].
2) Design Size: Total number of classes used in a design
[1].
3) Coupling: class coupling is a measure of how many
classes a single class uses [5]. High coupling indicates a
design that is difficult to reuse and maintain because of its
many interdependencies on other types. Class coupling has
been shown to be an accurate predictor of software failure
and recent studies have shown that CBO>14 is too high [6]
an upper-limit value of 9 is the most efficient [7].
4) Depth of Inheritance Tree (DIT): The DIT for a
particular class calculates the length of the inheritance
chain from the root to the deepest level of this class. If DIT
increases, it means that more methods are to be expected to
be inherited, which makes it more difficult to calculate a
class’s behavior [8]. On the other hand, a large DIT value
indicates that many methods might be reused [9]. A
recommended DIT is 5 or less.
5) Weighted Methods per Class (WMC): WMC = number
of methods defined in class. Keep WMC down. A high
WMC has been found to lead to more faults. A study of 30
C++ projects suggests that an increase in the average
WMC increases the density of bugs and decreases quality.
High value of WMC indicates the class is more complex
than that of low values. So class with less WMC is better.
The study suggests "optimal" use for WMC but doesn't tell
what the optimum range is [10].
6) Cohesion: Cohesion refers to how closely the operations
in a class are related to each other. A lower value means
higher cohesion between class data and methods. High
cohesion indicates good class subdivision. Lack of
cohesion or low cohesion increases complexity [11].
7) Encapsulation: Information hiding gives rise to
encapsulation in object-oriented languages. The following
two encapsulation measures are contained in the MOOD
metrics suite [6][7][20].

Lalima Soni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (3) , 2020, 37-41

www.ijcsit.com 38

Attribute Hiding Factor (AHF)
The Attribute Hiding Factor measures the invisibilities of
attributes in classes. The invisibility of an attribute is the
percentage of the total classes from which the attribute is
not visible. It is desirable for the AHF to have a large
value.
Method Hiding Factor (MHF)
The Method Hiding Factor measures the invisibilities of
methods in classes. The invisibility of a method is the
percentage of the total classes from which the method is
not visible. MHF should have a large value.
8) Inheritance: A measure of “is –a” relationship between
classes [1]. Inheritance occurs in all levels of a class
hierarchy. The two metrics used to measure the amount of
inheritance are the depth and breadth of the inheritance
hierarchy [12].
9) Composition: It measures the “part-of”, “has”, “consist-
of” or “part-whole” relationship, which are aggregation
relationships in an object –oriented design [1].
10) Abstraction: Abstraction is a measure of the
generalization-specialization aspect of the design [1].
Classes in a design which have one or more descendants
exhibit this property of abstraction. Greater the number of
descendants, the greater the likelihood of improper
abstraction of the parent class. If a class has a large number
of children, it may be a case of misuse of sub classing
[5][13][14].
11) CCComplexity: Complexity is a measure of the degree
of difficulty in understanding and comprehending the
internal and external structure of classes and their
relationships [1]. Cyclomatic complexity, defined by
Thomas McCabe, it is easy to understand and calculate,
and it gives useful results. This metric considers the
control logic in a procedure. It is a measure of structural
complexity.Cyclomatic complexity defined by CC =
Number of decisions + 1 Here Decisions are caused by
conditional statements. Low complexity is desirable [15].
12) Polymorphism: Polymorphism is the ability of an
object to take on many forms. The most common use of
polymorphism in OOP occurs when a parent class
reference is used to refer to a child class object. any Java
object that can pass more than one IS-A test is considered
to be polymorphic. Polymorphism arises from inheritance.
Binding (usually at run time) a common message call to
one of several classes (in the same hierarchy) is supposed
to reduce complexity and to allow refinement of the class
hierarchy without side effects. On the other hand, to debug
such a hierarchy, by tracing the control flow, this same
polymorphism would make the job harder. Therefore,
polymorphism ought to be bounded within a certain range
[1][16].
Using the above definitions of object oriented metrics we
conclude the desirable value of metrics which is shown in
Table I.

B. Formulas for Quality Metrics
The relationship between object oriented metrics and
quality metrics can be driven by the following formula.
1.Reusability: The ability to reuse relies in an essential
way on the ability to build larger things from smaller parts,

and being able to identify commonalities among those
parts. Formula for reusability is given below [1][5].

Reusability formula = (-0.25*coupling) + (0.25*cohesion)
+ (0.5*messaging) + (0.5*design size)
2.Flexibility: The ease with which a system or component
can be modified for use in applications or environments
other than those for which it was specifically designed
[1][17].

2.Flexibility formula = (0.25*encapsulation) -
(0.25*coupling) + (0.5*composition) +
(0.5*polymorphism)

3.Understandability: The capability of the component to
enable the user (system developer) to understand whether
the component is suitable, and how it can be used for
particular tasks and conditions of use [1][18].
Understandability formula = (-0.33*abstraction) +
(0.33*encapsulation) - (0.33*coupling) + (0.33*cohesion)
-(0.33*polymorphism) - (0.33*complexity) - (0.33*design
size)

4.Extendibility: It is a systemic measure of the ability to
extend a system and the level of effort required to
implement the extension [1][19].
Extendibility formula = (0.5*Abstraction) - (0.5*coupling)
+ (0.5*inheritance) + (0.5*polymorphism)
5.Effectiveness: The degrees to which objectives are
achieved and the extent to which targeted problems are
solved [1][5].
Effectiveness formula = (0.2*abstraction) +
(0.2*encapsulation) + (0.2*composition) +
(0.2*inheritance) + (0.2*polymorphism)

TABLE I DESIRABLE VALUE OF METRICS

IV. RESULT

Figure.2 shows the result of metrics calculation by object
oriented tool. Here quality metrics is calculated for each
class presents in Java project. Using the concept of
McCall’s Quality factor [20] we also shown relationship
between Object oriented metrics and Quality metrics in
figure.3. Here relationship is shown by 0(low) and 1(high)
values. For high reusability of our classes it is needed to
increase the value of cohesion, messaging and design size,
but to decrease the value of coupling. Similarly for high
flexibility it is needed to increase encapsulation,
composition and polymorphism but to decrease the value
of coupling. For high understanding it is needed to
increase the value of cohesion and encapsulation but to
decrease the value of coupling, design size, polymorphism,

Metrics Desirable Value
Number of classes High
Coupling Low
Depth of Inheritance Low
Weighted Methods Per Class Low
Lack of Cohesion Low
Encapsulation (AHF +MHF) High
Complexity Low

Lalima Soni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (3) , 2020, 37-41

www.ijcsit.com 39

abstraction and complexity. For high extendibility it is
needed to increase polymorphism, abstraction and
inheritance but to decrease the value of coupling, and for

high effectiveness it is needed to increase the value of
encapsulation, composition and polymorphism, abstraction
and inheritance.

Fig. 2 Screenshot of metrics calculation generated by object oriented metric tool

Fig. 3 Relationship between object oriented metrics and quality metrics generated by result observation

Lalima Soni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (3) , 2020, 37-41

www.ijcsit.com 40

V. CONCLUSION AND FUTURE WORK
The developed system is a comprehensive tool which
extracts the properties of Java project, and using those
properties it calculates object oriented metrics and quality
metrics. This tool works like a testing tool, because
implementers are able to check quality of product before
the deployments which help to improve the overall
product. The cost spent for maintenance will also be
reduced. This tool can be enhanced to calculate quality
metrics for other object oriented language. This tool can
also be connected with database for storing measured
records.

REFERENCES
[1] Mythili Thirugnanam and Swathi.J.N. “Quality Metrics Tool for

Object Oriented Programming” International Journal of Computer
Theory and Engineering, Vol. 2, No. 5, October, 2010 1793-8201.

[2] B. Kitchenham and S. Pfleeger, "Software quality: the elusive
target", Software, IEEE, vol. 13, no. 1, pp. 12–21, 1996.

[3] C. Neelamegam ,Dr. M. Punithavalli “A Survey - Object Oriented
Quality Metrics” Global Journal of Computer Science and
Technology.

[4] Sherif M. Yacoub, Hany H. Ammar, and T. Robinson, “Dynamic
Metrics for Object Oriented Designs”.

[5] Chidamber, S. R. & Kemerer, C. F. (1994). A Metrics Suite for
Object Oriented Design (IEEE Transactions on Software
Engineering, Vol. 20, No. 6). Retrieved May 14, 2011, from the
University of Pittsburgh web site:
http://www.pitt.edu/~ckemerer/CK%20research%20papers/MetricF
orOOD_ChidamberKemerer94.pdf

[6] Houari A. Sahraoui, Robert Godin, Thierry Miceli: Can Metrics
Help Bridging the Gap Between the Improvement of OO Design
Quality and Its Automation? http://www.iro.umontreal.ca/
~sahraouh/papers/ICSM00.pdf

[7] Shatnawi, R. (2010). A Quantitative Investigation of the Acceptable
Risk Levels of Object-Oriented Metrics in Open-Source Systems
(IEEE Transactions on Software Engineering, Vol. 36, No. 2).

[8] Daniela Glasberg, Khaled El Emam, Walcelio Melo, Nazim
Madhavji: Validating Object-Oriented Design Metrics on a
CommercialJava Application. 2000. http://iit-iti.nrc-cnrc.gc.ca/iit-
publications-iti/docs/NRC-44146.pdf

[9] Muktamyee Sarker, Jurgen Borstler “An overview of Object
Oriented Design Metrics”.

[10] Misra & Bhavsar: Relationships Between Selected Software
Measures and Latent Bug-Density: Guidelines for Improving
Quality. Springer-Verlag 2003.

[11] An introduction of OOM http://agile.csc.ncsu.edu/
SEMaterials/OOMetrics.htm.

[12] Abreu, F. B. e., "The MOOD Metrics Set," presented at ECOOP '95
Workshop on Metrics, 1995.

[13] Daniel Rodriguez Rachel Harrison “An Overview of Object-
Oriented Design Metrics” RUCS/2001/TR/A March 2001.

[14] Seyyed Mohsen Jamali “ Object Oriented Metrics”.
[15] Cyclomatic Complexity http://www.aivosto.com/project/help/pm-

complexity.html
[16] Prof. Jubair J. Al-Ja’afer, Khair Eddin M. Sabir “Metrics for object

oriented design (MOOD) to assess Java programs”.
[17] IEEE.Standard Glossary of Software Engineering Terminology

610.12-1990, Vol. 1. LosAlamitos: IEEE Press, 1999.
[18] Manuel F. Bertoa and Antonio Vallecillo “Usability metrics for

software components”.
[19] Vibhash Yadav, Raghuraj Singh “Validating Extendibility of the

Object-Oriented Software using Fuzzy Computing Techniques”
International Journal of Computer Applications (0975 –8887)
Volume 65– No.25, March 2013.

[20] McCall’s Software Quality Checklist arch
2013.Available:http://www.csse.monash.edu.au/courseware/cse330
8/cse3308_2005/assets/McCall_Checklist.pdf

[21] Codeproject(2011) Available: http://www.codeproject.com/
Articles/179645/What-is-software-quality

[22] Sheikh Umar Farooq, S. M. K. Quadri, Nesar Ahmad,”SOFTWARE
MEASUREMENTS AND METRICS: ROLE IN EFFECTIVE
SOFTWARE TESTING” International Journal of Engineering
Science and Technology (IJEST)

Lalima Soni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (3) , 2020, 37-41

www.ijcsit.com 41

http://www.pitt.edu/%7Eckemerer/CK%20research%20papers/MetricForOOD_ChidamberKemerer94.pdf
http://www.pitt.edu/%7Eckemerer/CK%20research%20papers/MetricForOOD_ChidamberKemerer94.pdf
http://www.iro.umontreal.ca/%20%7Esahraouh/papers/ICSM00.pdf
http://www.iro.umontreal.ca/%20%7Esahraouh/papers/ICSM00.pdf
http://agile.csc.ncsu.edu/%20SEMaterials/OOMetrics.htm
http://agile.csc.ncsu.edu/%20SEMaterials/OOMetrics.htm
http://www.aivosto.com/project/help/pm-complexity.html
http://www.aivosto.com/project/help/pm-complexity.html
http://www.codeproject.com/%20Articles/179645/What-is-software-quality
http://www.codeproject.com/%20Articles/179645/What-is-software-quality

